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Preface

Coordination among U.S. infantry, armor, airborne, and special force elements has improved as
new command, control, communications, computers, and intelligence technologies have matured
and been fielded. Unfortunately, many of these technologies have also been made available to
active and potential opponents of this nation. The end of the “Cold War” has seen the transfer of
many advanced armaments and communication equipment to rogue states, terrorist groups, and
endemic guerilla movements around the world. Those who are trained in the effective operation of
modern military equipment represent a credible threat to relatively small rapid deployment forces
sent abroad by the United States or its allies. Frequently, adversaries enjoy the advantage of time
and terrain in the preparation of defenses, ambushes, and counterattacks in the vicinity of their
redoubts.

In such an environment, any resource that “leverages™ the technological advantages of the

U.S. Army and its sister services may spell the difference between rapid success or extended
stalemate in tactical operations. One domain that has a driving role in Army operations is the
weather that encompasses the battlefield. The commander in today’s Army has substantial new
environmental tools for enhanced situational awareness, which were unavailable until very
recently. The U.S. Army Research Laboratory (ARL) has been instrumental in creating a number
of these new tools. One example is the Integrated Meteorological System, a mobile system that
integrates meteoro-logical satellite data, weather forecast models, data visualization utilities, and
tactical decision aid (TDA) applications for timely use by the war fighter.

New sources of weather and other environmental data will soon be available that markedly
improve weather characterization over remote or data-denied areas. In this report, we examine the
interaction of TDA model predictions with one such data source, the proposed National Polar-
orbiting Operational Environmental Satellite System (NPOESS). NPOESS and similar weather
satellite platforms follow polar orbits that are much closer to the earth than geo-synchronous
satellites and thus have much higher spatial resolution. The current Department of Defense polar-
orbiting system, the Defense Meteorological Satellite Program (DMSP), has considerably lower
spatial resolution than does the nominal NPOESS system, and the DMSP lacks the calibrated
radiance imaging necessary to retrieve atmospheric optical depths that is available from NPOESS.
We investigated the impacts that these NPOESS advantages have on target detection range
estimates for low altitude sensors viewing tank or bunker-type targets.’
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Executive Summary

This report examines satellite representations of environmental conditions that significantly
affect night vision goggle (NVG) and infrared (IR) sensors typically carried on Army helicopters
and aircraft flying at low speeds and very low altitudes. Our study uses simulated data (with
resolutions appropriate to the Defense Meteorological Satellite Program (DMSP) and the
proposed National Polar-orbiting Operational Environmental Satellite System (NPOESS) polar
orbiters) as environmental input to the Target Acquisition Weapons Software (TAWS) tactical
decision aid (TDA). As a recent addition, TAWS now includes the Night vision goggles
Operations Weather Software (NOWS) TDA.

Relative effects that data products from the current DMSP and future NPOESS platforms have
on TDA results are topics of the study. Remotely sensed environmental properties can strongly
influence the target detection range predicted by a TDA model in tactical scenarios. The TDA
target detection range is therefore the metric that we have used to compare the quality of DMSP
and NPOESS results. The discussion divides into two sections, both concerning tactical Army
scenarios. The core of our study addresses direct impacts that these different satellite platform
resolutions have on TDA detection range. An additional study section details secondary
consequences of satellite data quality: data latency impacts, target search considerations, and
war game implementation.

Core Study: TDA Performance

Background clutter, background type, and illumination type provided the most significant
impacts for the NVG sensor that was examined in our study. Less significant effects on detection
range were found for boundary layer height (the thickness of the aerosol haze layer that is
adjacent to the surface of the earth), cloud cover, and battlefield-induced contaminants (BIC),
i.e., dust, airborne debris, and smoke.

Two background pairs were examined for impacts on the operation of an IR sensor with narrow
field of view (NFOV) and wide field of view (WFQOV) scanning modes. Primary impacts came
from precipitation, cloud cover, and (for the NFOV mode) BIC for the background pair
comprised of dense and sparsely growing vegetation. Minor effects were seen for clutter and
background type. The second background pair featured fresh snow and sparse dormant
vegetation. The primary impacts were similar to those for the dense/sparse vegetation
background pair, with the addition of background type having a significant effect. Minor effects
attributable to season (i.e., primarily temperature changes) and clutter were also observed.

The impact study results are summarized in Table 1. Note that the TV sensor type was only
examined for the case of derived surface visibility. Because of the similar operating wavelength
band, it was assumed that TV impacts were similar to those for NVG sensors.




Table 1. Environmental effects with significant (\) and major (x) impacts on detection range

Baftichield Environment Paraitieter _

- Sensor }—

TV o by b4 i
'NVG X X v
JR v X X xt
*BLH = boundary layer height

¥NFOV mode only

 Impact assumed to be similar to NVG

Significant individual environmental parameters were surveyed with the parameter impact study
results used as guides. When possible, DMSP resolution results were compared with those from
the NPOESS. In cases when an environmental parameter cannot be directly measured by the
DMSP (e.g., atmospheric optical depth), the discussion involved NPOESS alone.

Precipitation rate comparisons showed that DMSP-derived detection range uncertainties are 2 to
4 times larger than NPOESS for the wide range of selected precipitation rates. The results also
demonstrate that the detection range uncertainty diminishes with increasing rain rate.

Surface visibility has significant effects on certain sensor types such as TV sensors. NPOESS
can provide surface visibility data, but the DMSP platform cannot. This study found that the
NPOESS-derived low altitude NVG detection range showed little effect for typical haze layer
visibilities and boundary layer heights. The TV sensor showed the largest detection range
response to haze layer visibility variation but relatively little response to boundary layer height
variations. The IR sensor showed only moderate variations in detection range.

Cloud cover/base height differences between cloud cover patterns derived from the DMSP
smooth resolution imagery and the NPOESS threshold resolution are largest for low clouds (with
cloud bases below 1 kilometer (km) above ground level [AGL]). When cloud bases exceeded

2 km AGL, little difference for cloud cover results was seen between the DMSP fine and
NPOESS threshold resolution results.

Overall, the NPOESS threshold resolution provides superior spatial and parametric
characterization in comparison to that provided by the DMSP for several significant
environmental parameters. From the Army standpoint, the most important of these are
precipitation rate and cloud cover for NVG and IR sensors and to a lesser degree, meteorological
visibility for visible band TV sensors. The calibrated radiometric data from the visible/infrared
imager/radiometer suite sensor and the finer frequency coverage and spatial resolution of the
microwave band conical microwave imager/sounder and cross-track infrared sounder sensors on
NPOESS will make certain parameters (such as surface visibility, boundary layer height, and
cloud base height) available at resolutions of practical use in Army TDA applications. The
results presented herein demonstrate substantial improvements in data quality in comparison to




the data quality presently available from DMSP, even when the threshold NPOESS resolutions
are considered.

Additional Study: Data Latency, Search Requirements, and War Gaming

As an additional study, we also examined the consequences of satellite parameter resolution on
target detection range impacts because of data latency, asset allocations for target search, and
war gaming input data requirements.

Data latency times that are significantly shorter than the duration of a sensor-impacting
meteorological event cause peak detection range errors that can grow dramatically with the
latency lag time. Under a light rain scenario that begins and ends abruptly, errors on the order of
10 km were noted, even for latency periods as short as 0.5 hour. More slowly varying
meteorological events lead to smaller detection range errors in the TDA model predictions for a
given data latency time; additional NPOESS satellite platforms would also mitigate latency
impacts.

The time required to search a tactical area with a variable number of identical sensor platforms
was examined with a simple model. The application of DMSP and NPOESS-resolution data and
the TAWS model for a sample scenario indicated that estimated search times for a fixed number
of sensor platforms or estimated number of platforms required for a fixed search time had
markedly lower uncertainties when the NPOESS data were employed. It is anticipated that this
finding will still be valid when more sophisticated search models are used.

Force-on-force attrition formulations used in war games vary according to the relative skill,
operational doctrines, and equipment of the opposing forces. For most of these models, the
individual values of the attrition rate coefficients or their ratio play a central part in the allocation
of resources required to win or survive the engagement. The combined higher spatial and
parametric resolution of NPOESS platform relative to DMSP leads to less uncertainty in the
estimates of target acquisition times, more accurate estimates of attrition, and thus, increased
confidence in derived simulation results. Since coupling the attrition rate coefficients required
for the war-gaming simulations with TDA predictions for maximum target resolution would have
required modifications of the underlying TDA source code, this task was left to subsequent
studies.
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1. Introduction

The Target Acquisition Weapons Software (TAWS) is a successor to the Air Force’s Electro-
Optical Tactical Decision Aid (EOTDA) (Touart et al., 1993) and with the advent of TAWS
Version 3, includes the Night vision goggles Operations Weather Software INOWS) (Gouveia,
1997). The EOTDA was a weather impacts decision aid disk operating system (DOS) program
that simulated the performance of electro-optical sensors and various targets, primarily from an
Air Force point of view, that is, with downward looking scenarios. TAWS, a graphical user
interface (GUI)-based program running under the Windows operating system, is a tri-service
program that includes additional Army and Navy sensor and target object models, provides
revisions of the sensor performance model and other physics routines, accepts current or forecast
weather data, and provides improved GUI input. Thus, TAWS accepts information concerning
user-selected sensors and targets, combines this with automated or user input information about
weather, and provides graphical or tabular output about the impacts that the weather has on the
ability of the chosen sensor to acquire the selected target during the given weather conditions.
The commander can then use this information for mission planning purposes or to ascertain
which weapons platform can “see” the farthest in current or forecast weather conditions.

Because TAWS Version 3.0 was released after this study was started, TAWS Version 2.2 and
NOWS Version 6.0 were used as surrogates. Other differences between TAWS Version 2.2 and
TAWS Version 3.0, aside from the inclusion of NOWS, include a revised thermal performance
model multi-service electro-optic signatures (MuSES) (Johnson et al., 1998) and replacement of
the Schmieder sensor performance algorithm with the more widely accepted Night Vision and
Electronic Sensor Directorate’s (U.S. Army CECOM, 1995) Acquire model. For a detailed
comparison of the differences between these two sensor performance algorithms, the reader is
referred to Shirkey, Sauter, and Cormier (2001); for the purposes of this study, the results would
remain the same.

To determine the maximum detection range to acquire a given target, a number of quantities
need to be known: the target-to-background contrast, the atmospheric conditions, solar or lunar
luminance, and sensor characteristics, all of which are spectrally variable. Many of these
environmental entries to weather effects decision aids depend highly on detailed knowledge of
the atmospheric state above a region of operational interest. Remote sensing technologies have
improved to a point that many critical atmospheric state parameters may be obtained from
sensors carried on board high altitude aircraft or satellite platforms.

It is important that the Army provides its viewpoint and emphasis in the application of TDA
models such as TAWS or NOWS to its near-surface domain of activity. This is particularly true
for the developing environmental data “feeds” from satellite sources, where sensor hardware and
software improvements can significantly enhance TDA performance for data-denied areas




encountered in Army operations. Given this need and the opportunity to direct the future
development of sensor suites available on board the next generation of satellite systems, it was
deemed expedient to determine the performance improvement possible, given different choices
and mixes of future sensors.

In this report, we discuss data provided by the Defense Meteorological Satellite Program
(DMSP) and National Polar-Orbiting Operational Environmental Satellite System (NPOESS)
polar orbiters, and specific illustrative scenarios. The intent here is to examine satellite
representations of environmental conditions that significantly impact night vision goggle (NVG)
and infrared (IR) sensors typically carried on Army helicopters and aircraft flying at low speeds
and very low altitudes. We use earlier results from TDA sensitivity studies (e.g., Keegan, 1990,
or Cormier, 2000) to define which environmental parameters should be considered in these
assessments. Further, we will distinguish the impacts that data products from the older DMSP
platforms have on the TDA performance relative to those from the future NPOESS platforms.
Our principal metric for these comparisons is the 50% probability of detection range reported
during variations from the base scenarios.

2. Comparison of Parameter Resolutions for the DMSP and NPOESS
Platforms

The atmospheric sensor systems carried on board the DMSP series of polar orbiters include the
Operational Line Scan system (OLS), Special Sensor Microwave Imager (SSM/I), Special
Sensor Microwave Atmospheric Temperature Sounder (SSM/T-1), and the Special Sensor
Microwave water vapor profiler (SSM/T-2).

The OLS has broadband visible-near IR (0.58 to 0.91 um full width at half maximum [FWHM])
and far IR (10.3 to 12.9 um FWHM) sensors, as well as a PMT (photo multiplier, 0.51 to 0.86
pum FWHM) sensor for low light operation. The OLS operates in two primary resolution modes.
The higher resolution “fine” mode has a nadir spot size of 0.55 kilometer (km) that is used for
special order data sets of regional interest. The low resolution “smooth” mode is an aggregation
of fine mode data, which has a resolution of 2.7 km at nadir and is the primary operational mode
for the OLS for global data sets. The PMT sensor also operates in smooth mode.

The SSM/I is a seven-channel, four-frequency (19 to 85 GHz) linearly polarized passive
microwave sensor that provides data about precipitation over land and water, soil moisture, cloud
liquid water, and land/sea surface temperatures (among other parameters). The longer operating
wavelength for this instrument contributes to a much larger nadir spot size than that for the
OLS—approximately 25 km diameter. The SSM/T-1 operates in seven channels in the 50- to
60-GHz band, providing vertical profiles of air temperature at a rather larger nadir spot size of
174 km diameter. Coarse vertical profiles and horizontal distribution of water vapor data are




provided by the SSM/T-2 sensor, which operates in three channels near a 183-GHz water vapor
line (as well as in two window channels). The nadir spot size for this instrument is approximately
48 km in diameter.

Because the NPOESS sensor suite is being developed, performance specifications for sensor
subsystems have been subject to periodic revision. These specifications are published in the
NPOESS integrated operational requirements document (IORD). The IORD draft version 1A
(Joint Agency Requirements Group, 2000) was used for some of the information in the following
discussion. In this document (as in the case of the DMSP), two working horizontal spatial
resolutions for the imaging sensors are anticipated: a lower resolution (called the “threshold”
mode) and a higher resolution “objective” mode. Currently, the hardware development has only
committed to the threshold resolution mode. The data products (environmental parameters) that
are derived from the processing of raw sensor data are known as environmental data records
(EDRs). Three of the NPOESS sensor suites will produce EDRs of interest from the TDA
standpoint: the visible/infrared imager/radiometer suite (VIIRS), the conical microwave
imager/sounder (CMIS), and the cross-track infrared sounder (CrIS).

VIIRS will operate in the visible to far IR spectral region (0.3 to 14 um), providing information
about clouds, atmospheric aerosols, and land/sea surface properties (from 26 EDRs). The
principal advantage of VIIRS is that it combines the spectral resolution and radiometric accuracy
of the Advanced Very High Resolution Radiometer (AVHRR) flown on National Oceanic and
Atmospheric Administration’s (NOAA’s) polar orbiters with the horizontal spatial resolution of
the DMSP OLS. The Moderate Resolution Imaging Spectro-radiometer (MODIS) that is carried
on board the Terra (EOS AM-1) polar orbiter is similar to VIIRS in spatial and spectral
resolution. The MODIS data should thus provide a surrogate for testing the processing and
interpreting of VIIRS EDRs. The MODIS sensor (among others on Terra) also has “direct
broadcast” capability, in which it can send data directly to an appropriately equipped earth
station from space in near real time during an overpass. This ability may also prove convenient
for testing data latency effects on TDA performance.

The NPOESS CMIS sensor package will perform functions analogous to the DMSP SSM/I
sensor but with higher spectral and spatial resolution. This sensor system will provide
information including temperature and moisture vertical profiles and their horizontal distribution,
cloud properties, and sea surface winds (among data from 20 EDRs). Data for three EDRs will
be supplied by CrlS, including temperature, moisture, and atmospheric pressure profiles. This
sensor suite is similar to a combination of the DMSP SSM/T-1 and SSM/T-2 packages.

The data supplied from the IORD and other sources' allow us to compare the differences in
parameter and spatial resolutions available from the DMSP and NPOESS platform sensor suites
described previously. Table 2 summarizes such a comparison for a selected set of data products
for these sensors at different operating resolutions; the selection is biased toward TDA

'Private communication, McWilliams, 2001.




application and the discussion that follows. Those products that are unavailable or are of dubious
availability are simply designated by “N/A” entries in the table.

Table 2. Comparison of resolutions for selected DMSP and NPOESS data products

Resolution NPOESS NPOESS

Parameter/Spatial (Threshold) (Objective)
Surface Visibility 10 km 1 km
Horizontal
Cloud Amount: +10% 5%
Horizontal 25 km 2 km
Cloud Base Height 2 km 0.25 km
Horizontal 25 km 10 km
Clutter
Horizontal 0.4 km 0.1 km
Rain Rate +2 mm/hr +2 mm/hr
Horizontal 15 km 0.1 km
Boundary Layer 20 mb 15mb
Height (about 0.17 km near §| (about 0.12 km near
Vertical the surface) the surface)
BIC
Horizontal 0.4 km 0.1 km
Soil Moisture +10% 5%
Horizontal 4 km 2km

mb = millibars

In the table, we have displayed the low (smooth) and high (fine) spatial resolution modes for
DMSP performance and the low (threshold) and high (objective) resolution mode performance
for the NPOESS platform. The normal spatial resolution for DMSP data is the smooth mode for
routine global coverage. When a specific region of interest is to be studied, the fine resolution
mode is employed. The threshold NPOESS performance level is currently expected to be the
routine operational mode for that system. Thus, when one considers the normal operational
modes, it is apparent that the NPOESS platform has a distinct advantage over the DMSP in its
spatial resolution.

3. Input Parameter Selection for TAWS/NOWS Sensor Impacts

3.1 Clutter

In general, the user-specified clutter level will have a substantial effect on target detection ranges
in the TAWS/NOWS models. For small vehicular targets, the spatial resolution for clutter
determination in a scene must be on the order of the size of the vehicle. Unfortunately, neither
the DMSP (with its 0.6-km nominal maximum horizontal resolution) nor the 0.1-km objective
mode resolution specification for the NPOESS visible/IR band will satisfy this requirement. On



the other hand, larger man-made targets such as buildings, bridges, rail yards, or dams do
approach scales detectable by the DMSP/NPOESS sensor packages. The higher resolution
NPOESS sensor is evidently better suited to the task of clutter estimation, although it is not
entirely clear how surface clutter data obtained at small angles to the terrain surface normal (by
satellite) will translate into estimates at larger angles characteristic of near-earth helicopter-borne
sensors. It might also be argued that low spatial frequency clutter is a parameter that varies
slowly with time and thus, could be better estimated from high-resolution data sets from satellite
platforms such as the Landsat (land satellite system) or SPOT (Satellite Pour 1’Observation de la
Terre). This is probably true in many cases (particularly for arid regions), but the response of
vegetation and other terrain elements to seasonal or episodic (i.e., storm induced) variations in
precipitation argues for assessment of clutter on a shorter time scale. DMSP and NPOESS can
provide such data on a daily basis.

For smaller targets (e.g., an individual tank in a column), the lower resolution satellite data may
delineate zones of low clutter (such as patches of snow) from higher clutter areas (such as
adjacent stands of trees or brush). Here, again, the higher resolution NPOESS imagery should
provide more accurate input of this environmental parameter for target groupings measuring
several hundred meters in extent.

The specification of clutter in the TAWS/NOWS models is essentially tri-state (low, medium,
high). The effect of variation of this parameter for large targets should thus be investigated. It is
expected that the lower resolution DMSP imagery will tend to bias estimates to the low end of
the clutter scale.

3.2 Battlefield-Induced Contaminants (BIC)

The effect of BIC on TAWS/NOWS detection ranges is also pronounced, particularly when
background haze levels are low. These contaminants normally are quite localized and quite
inhomogeneous when they are present on the modern battlefield. Screening smokes have high
extinction coefficient values in their applicable wavelength bands, so spatially small BIC events
can have marked impacts on the sensor performance simulated by TAWS/NOWS. However, the
treatment of BIC phenomena by TAWS/NOWS is rather crude, with a simple “present/not
present” selector as the only parameter control available to the user. Thus, the implication is that
the BIC event is present uniformly over the field of regard or line of sight (LOS) of a
TAWS/NOWS scenario. While one might argue for a more sophisticated treatment of BIC in
these models, the current situation requires that the satellite data be reduced to provide only a
“yes/no” answer about the presence of BIC phenomena. In this case, the available resolution of
the satellite data is critical.

To illustrate the role of DMSP versus NPOESS horizontal resolution, consider the following set
of one-dimensional examples. Suppose that our criterion for signaling the presence of a BIC
event is that the observed excess radiance of a pixel over the nominal background is 50% of the
full-scale value that would be observed, for example, for a perfect reflector. The length of our



notional LOS is 6 km, and we have a Gaussian-distributed BIC event of the form exp(-(x-
Xo)*/6%), in which x is the distance from the origin on the LOS, x, is the distance of the center of

the Gaussian BIC event from the LOS origin, and o is the 1/e half-width of the Gaussian. The
true form of the Gaussian function is plotted, along with the pixel width averages for resolutions
of 0.6 km (DMSP fine mode) and 0.1 km (NPOESS objective mode). Figure 1 shows a result for
a BIC event at the LOS midpoint (x,= 3.0 km) and with a rather large extent (¢ = 1.5 km). Both
sensor resolutions have multiple pixel registrations that are above the L/L(max) = 0.5 threshold,
easily detecting the event.

3
g 1 o
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(14
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i Y
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u 0 1 2 3 4 5 6
LOS Position (km)

Figure 1. Very large BIC region that is easily detected at both
sensor resolutions.

For a case when the BIC region is very small (¢ = 0.1 km), Figure 2 illustrates that the higher
resolution NPOESS imager detects the anomaly and that the DMSP fails to detect it by a wide
margin. The same result holds for a slightly larger BIC region (¢ = 0.3 km) in Figure 3, although
the DMSP-resolution result comes much closer to detection at the 0.5 threshold. Figure 4 shows
that a slight displacement of the BIC region center (from x, = 3.0 to X, = 2.7 km) creates a case
when the lower resolution sensor does detect the BIC event. Thus, as one would expect, the
detection of even large BIC events is a hit-or-miss affair for the lower resolution sensor when the
events have sizes on the order of its resolution. In truth, neither sensor resolution is particularly
adroit at spotting small but significant BIC concentrations that may be of interest in operations
against smaller targets. Clouds much smaller than 100 m in extent will probably not be detected
and used as model input.
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Figure 2. Small BIC region that is detected by the higher
resolution imager and is missed by the lower
resolution sensor.
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Figure 3. Larger BIC region that is centered at a Figure 4. Larger BIC region that is centered on a

pixel boundary; lower resolution sensor DMSP pixel center; DMSP detects the
still fails to detect the event. BIC event in this instance.

3.3 Cloud Amount

Among the weather parameters in TAWS/NOWS that are given detailed treatment, cloud amount
(or fractional cloud cover) is a particularly good example; this is no surprise, given the Air Force
development heritage of TAWS/NOWS. Cloud cover is characterized by three input height
ranges, each of which has a user-specifiable cloud type (including “none™), cloud base height,
and cloud cover fraction (in eighths). When clouds are present for an Army near-surface mission,
the cloud type does not strongly affect the NVG or IR detection range results, nor does the cloud
base height (unless it intersects the sensor-target LOS). However, if low clouds are present, the
cloud-free line of sight (CFLOS) estimate given by the TAWS/NOWS models is strongly
affected by the cloud amount input. The cloud amount is, in turn, yielded by resolution-sensitive
imagery. The remarks about detection of BIC “events” or clouds also apply here: the lower
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resolution DMSP data will be less adept at detecting individual cloud puffs than will the higher
resolution NPOESS sensor. Thus, one would expect that cloud amount estimates for partially
cloudy conditions would be more accurate from the NPOESS sensor.

3.4 Surface Visibility

Results from earlier EOTDA sensitivity studies (e.g., Keegan, 1990) indicate that errors in
estimates of surface visibility do not strongly affect visible or IR detection range results until low
visibility conditions prevail. The horizontal spatial resolution of the DMSP/NPOESS sensors does
play a role in the size of the visibility uncertainty, but this is primarily for cases when the distri-
bution of boundary layer aerosol haze is not uniform and at least some sampled regions contain
high aerosol levels. Such conditions would prevail during dust storms or blizzards, for example.

Because aerosol extinction varies slowly with wavelength and the wavelength dependence of the
Rayleigh scattering is well defined, the spectral resolution of the EO sensor does not have to be
very high in order to yield reasonably accurate estimates of the total atmospheric optical depth.
However, the DMSP OLS sensor has such a large bandwidth response that it does not satisfy
even this weak performance requirement. The NPOESS aerosol optical thickness requirement
specified in the NPOESS IORD stipulates that the vertical optical depth of aerosols be obtained
at multiple wavelengths within the 0.4- to 2.4-um band. On-line documentation indicates that on
the order of a dozen visible band channels and several IR channels will be used by the VIIRS
system carried on board NPOESS. This should satisfy the wavelength resolution requirement
outlined previously.

4. Impact Study Design and Results

4.1 Design

A study was designed to quantitatively assess the impact of principal sensed parameters upon
TDA detection range performance, for the NOWS and TAWS base scenarios. The primary
environmental parameters for each base scenario are shown in Table 3.

For this study, we have selected sensors from the user menus provided in NOWS (AN/PVS-7,
third generation) and TAWS (U.S. Air Force Research Laboratory, 2001). The method used to
assess the impact of variations away from the base scenarios employs a factorial design at two
levels (Box, Hunter, & Hunter 1978). In this approach, a list of critical environmental parameters
is developed for each TDA model. Each of these parameters is allowed to assume only two
values (levels) at which the TDA is executed. The “main effect” ARper(t) of each environmental
parameter 0, is then simply the difference between the average (over all other parameters 7y so
that y # o) detection range calculated at one level of the parameter o; and the average at the
other level o:
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AR (@) = R_DET () - EDET (o). 1)

Table 3. Base scenario parameters

Parameter NOWS . - TAWS
- . Target T-80 tank T-80 tank
Background Vegetation/Growing/Dense Shrubs/Live/Dense
- Sensor AN/PVS-7, 3rd Gen. IR
Illumination Condition Full Moon Sun
Surface Visibility 10 km 10 km
Wind Speed - 0 knots 0 knots
Surface Temperature 12°C 7° to 17° C (diurnal variation)
- Surface Dew Point 4 5°C 5°C
Cloud Amount 0/8 (clear) 0/8 (clear)
Surface Aerosol Type Rural Rural
Surface Albedo Type Continental Continental
Clutter Level ; Low Low
Boundary Layer Height 3000 feet 3000 feet
BIC Not Present Not Present
Tropospheric Layer Default Default

We may also define two-factor interactions between parameters o and 3 as one-half the
difference of the main effect for one parameter (e.g., o) between states (B; and o) of the other:

AR, (, B) = [EDET (o, B) - EDET (a9, B)] ;[EDET (o, By) = EDET (0, By)] _ )

The critical parameters used in the impact study are shown in Tables 4 through 6.

Table 4. NOWS two-level parameters

Parameter Levels
Target Type 1 =T-80 tank
‘ ’ 0 = Eglin AFB bunker
Illumination 1 = Full Moon
‘ , 0 =New Moon
Clutter Level 1 = High
: i 0=Low
Background Type 1 = Shrubs/Growing/Dense
o 0 = Snow/Fresh/1 in Deep
Boundary Layer Height 1=100 ft.
Lo 0= 3000 ft.
BIC . 1 = Present
~ L 0 = Absent
Cloud Cover 1 = 8/8 (Overcast)
Lo 0 =0/8 (Clear)
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Table 5. TAWS two-level parameters: dense/sparse vegetation backgrounds

1 =T-80 tank (off state - ‘cold’)
= Eglin AFB bunker

1 =High

0=Low

1 = Vegetation/Growing/Dense

0 = Vegetation/Dormant/Sparse

1 =Wet

0 =Dry

1=7-17 C (Spring)

0=1-6C (Winter)

Precipitation 1 =5 mm/hr
L S 0 =0 mm/hr
Bl 1 = Present

» 0 = Absent

1 = 8/8 (Overcast)

C‘lou}i_iéoy,e
e 0 = 0/8 (Clear)

Table 6. TAWS two-level parameters: snow/sparse vegetation backgrounds

- ‘Parameter - | I Levels -

1 =T-80 tank (off state - ‘cold’)
SR ST 0 =Eglin AFB bunker
Clutter Level R A TE L 1 =High
' s o 0=Low

1 = Snow/Fresh/1 inch depth
0 = Vegetation/Dormant/Sparse
1=7-17 C (Spring)
0=1-6C (Winter)
P 1 =5 mm/hr

Ky 0 =0 mm/hr
o 1 = Present
0 = Absent
1 = 8/8 (Overcast)
0 = 0/8 (Clear)

Target Type PR

Background Type

Seasonal Temperature Vanatlon e

Cloud Co.ver‘. R

4.2 Results

The NOWS and TAWS TDAs were then exercised over the matrix of critical parameter
variations. The resulting target detection ranges were then abstracted into spreadsheets, the main
effects were calculated, and results were plotted at two observation times (0100 and 0345 for
NOWS and 0000 and 1200 for TAWS). The results are shown in Figures 5 through 8.
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Figure 5. Main effects for NOWS 50% probability of detection range.
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Figure 6. Two-factor parameter interaction effects for NOWS detection range.
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Figure 7. TAWS main effects for 50% probability of detection range: Dense and sparse vegetation
backgrounds.
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Figure 8. Two-factor interaction effects for TAWS detection range: Dense and sparse vegetation backgrounds.
Note that the main effects shown in the figures consist of the parameter “on” (level “1” in

Tables 4 or 5) average minus the “off” (level 0) average. The results show that for NOWS, the
primary environmental parameters that impact detection range are clutter and background type,
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with some significant contributions from most of the secondary parameters. In the case of
TAWS, precipitation, BIC and cloud cover strongly affect the detection range results (see
Figures 9 and 10).

[T mNFov (0000) @ WFOV (0000) O NFOV (1200) ® WFOV (1200) |

Detection Range Difference (km)

Effect Type

Figure 9. TAWS main effects for 50% probability of detection range: Snow and sparse vegetation
backgrounds. '
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Figure 10. TAWS two-parameter interaction effects for detection range: Snow and sparse vegetation
. backgrounds.

The connection of these results to DMSP and NPOESS horizontal spatial resolution can be

illustrated via a simple numerical example. Figures 11 to 13 show a fractal density distribution
(Saupe, 1988) that might represent a cloud field (or another parameter distribution such as one of
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precipitation or BIC) distributed over a 5-km by 5-km area. The original scene has a 10-m
resolution and is displayed in Figure 11. Figure 12 displays how the low resolution DMSP sensor
might record the scene at 0.5-km resolution. Figure 13 shows what the somewhat higher
resolution (0.1 km) NPOESS visible/near-IR sensor might record. We generate the simulated
DMSP and NPOESS images by summing the density values within the boundaries of each
overlaid grid square (or “pixel”) and then dividing by the pixel area.

The total scene area where the cloud density exceeds a zero threshold level is about 15 km? for
all three resolution levels. However (as in Figures 14 to 16), when the threshold is set to 50% of
the highest pixel value in each scene (which might, for example, be the arbitrary demarcation
between zones of partial cloudiness and overcast conditions), the lower resolution (DMSP)
results show a markedly larger (and somewhat differently shaped) area than either of the other
resolutions. Since we know (from the impact study results) that the TAWS IR sensor is strongly
affected by overcast conditions, the larger observed overcast area will indicate that the spuriously
large low resolution zone will have lower detection ranges. This will impact “go/no-go”
probability assessments derived from the combination of the TDA and satellite-derived
environmental data. It will also impact real-time TDA-augmented assessments when satellite
data are available in real time. Figures 17 through 19 illustrate how the TAWS ensemble average
detection ranges would map into contiguous regions at the three resolutions. Figures 20 and 21
show that the NPOESS resolution data are significantly better than those for the DMSP, both in
total area and perimeter conformity.

Figure 11. Original fractal Figure 12. Simulated DMSP Figure 13. Simulated NPOESS
density distribution, image, resolution image, resolution
resolution 0.01 km, 0.5 km, threshold 0.1 km, threshold
threshold level 0.0, level 0.0, area level 0.0, area abov:
area above thres- above threshold threshold
hold 14.82 km?. 15.00 km?’. 15.30 km’.
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Figure 14. Original fractal
density distribution,
threshold level 0.5,
area above thresholc
3.16 km®.

Figure 15. Simulated DMSP

image, threshold
level 0.5, area
above threshold
5.25 km®.

Figure 16. Simulated NPOESS
image, threshold
level 0.5, area
above threshold
4.01 km?.

Figure 17. Fifty percent
threshold map for
original resolution,
with average
detection ranges
shown (in km).

Same as previous
figure but for
DMSP.

Figure 19. Same as previous
figure but for
NPOESS.
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Figure 20. Overlay of DMSP 50% detection Figure 21. Overlay of NPOESS 50% detection

range perimeter over original reso- range perimeter over original resolution
lution map. map.

S. Individual Parameter Uncertainty Effects

In addition to the spatial resolution effects that satellite data products have on TAWS/NOWS
model predictions, uncertainties in measured parameter values can have significant impacts on
detection range results. The parameters that have the largest impacts for Army scenarios are
examined next.

S.1 Precipitation

As indicated before, the uncertainty in the measurement of precipitation rates from the DMSP
and NPOESS platforms will significantly affect the detection ranges predicted for IR sensors by
the TAWS model. The DMSP nominal uncertainty in the precipitation rate (5 mm/hr) is
roughly twice that projected for the NPOESS platform (2 mm/hr). The quantitative impact of this
disparity on TAWS detection ranges may be appreciated with a slightly modified version of the
TAWS base scenario from Table 2. Three parameters were modified from the original scenario:
soil moisture was changed from dry to wet, a low overcast (8/8, low level) was substituted for
the clear sky, and the precipitation (rain) rate was “stepped over” non-zero values (5, 10, and

20 mm/hr). The TAWS model was run for each extreme value in each platform’s envelope about
the mean precipitation rate. The resulting detection ranges as functions of time were then plotted
in Figures 22 through 24, with shading differentiating each platform’s range of variation. Note
that in the 5-mm/hr mean precipitation case, the minimum rain rate value for the DMSP was set
at 1 mm/hr, not 0 mm/hr. The zero precipitation rate yields a markedly different temporal
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variation than non-zero rates. In order to display relative system responses when rain is known to
be present, it was decided to use the minimal non-zero value of 1 mm/hr.
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Figure 22. TAWS detection range spread for S-mm/hr steady precipitation.

The largest disparities between the TAWS/DMSP and TAWS/NPOESS results occur for the
light rain (5 mm/hr) results. The DMSP detection range envelope widths vary from 1.5 km to

4 km over the course of the 24-hour period, with the NPOESS results showing a much smaller
0.7- to 1.5-km envelope width over the same period. There is a significant narrowing in the
DMSP detection range envelope during the 0800 to 0900 local time period that brings it fairly
close to the NPOESS envelope width. This is primarily because of the near equality of the
minimum rain rate DMSP and NPOESS detection range resutlts at 0800 and 0900 local time. In
fact, the DMSP data have two thermal cross-over events close to 0700 and 0800 for the 1-mm/hr
rain rate and 100-ft sensor altitude. This results in a (nearly) zero value AT at 0700 and 0800 and
an inde-terminate solution for the detection range at these times. The 0600 detection range value
was inserted at these “data missing” positions, although the true value is almost certainly lower.
The actual 0800-t0-0900 narrowing in the DMSP detection range envelope is thus probably more
exaggerated than is shown here.

The moderate and high rain rate results show smaller uncertainty envelopes, mainly because of
lower fractional uncertainties of the fixed size precipitation rate error. A 0.1-km “quantization”
effect at smaller detection range values is also apparent and is caused by the fixed decimal
format of the TAWS output values.
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Figure 23. TAWS detection range spread for 10-mm/hr steady precipitation rate.
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Figure 24. TAWS detection range spread for 20-mm/hr steady precipitation.

5.2 Surface Visibility or Atmospheric Optical Depth

The meteorological visibility near the earth’s surface (and within the boundary layer) is another
significant input to the TAWS/NOWS models. NPOESS provides sufficient data to assess this
property, while DMSP (see, for example, Table 1) does not. If we assume that the boundary (or
haze) layer is well mixed, it will have a uniform vertical profile of visible band extinction Kex
(km™) from the surface to the height of the haze layer top Zy (km). The optical depth 7 of the
haze layer is then given by Zy * kex. The conventional Koschmeider expression for horizontal
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meteorological visibility, V = 3.912/kex, may then be recast in terms of the haze layer height and
optical thickness:

V(Zy,©) =3.912 Zy/t. 3

Using the standard error propagation formula for a multivariate function,

2
VY v
ol=0—| +02 , 4
vV T [ aT ) z (aZH ] ( )
and the visibility expression from Equation (3), we reach, after some rearrangement, the result:
2
o, =0 [V )52 (5)
Z, Y\ 3.912

In order to derive a surface visibility from NPOESS measurements, the boundary layer height Zy
AGL and haze layer optical depth T are determined from the data and inserted into Equation (3).
Zy is effectively the height of the fop of the capping temperature inversion (over the boundary
layer). An NPOESS passive microwave sensor that provides data during both day and night
illumination conditions measures the temperature profile required to determine Zy. Other
(surface-based) means may be used to provide this parameter, such as radiosonde data, active
lidar/sodar sounding, or diurnal/climatological projection. Here, we will simply assume that the
NPOESS temperature profile measurement is used to obtain Zy and that the uncertainty o, is
given by the threshold value for vertical resolution in the temperature profile. This value is given
in the IORD document (and in Table 2) as an atmospheric pressure increment of 20 mb near the
surface or about 0.17 km in height. In practice, 6, will generally be larger than this value because

of the weakness or absence of a distinct capping inversion.

The second parameter required to compute visibility is the total (acrosol plus molecular) optical
depth 7. The procedure for retrieval of this parameter from NPOESS data over the entire day is
not yet specified in detail in the NPOESS documentation. However, the IORD document does
give a threshold value of 0.03 for the uncertainty in the atmospheric optical depth measurement.
If we assume that the atmospheric optical depth above the top of the haze layer is well
characterized and is nearly invariant, we can use the 0.03 value as an estimate for the haze layer
optical thickness 6,. We may then assume a small set of visibility examples that might result
from application of Equation (3): 2, 5, 10, and 20 km. Further, we might also assume a
reasonable set of typical values for the haze layer thickness Zy: 0.3, 0.5, 1.0, 1.5, 2.0 km. The
first two values are characteristic of a thin nighttime boundary layer; the final three are normal
for a well-mixed daytime convective boundary layer. We may create a two-dimensional matrix
of these parameter values and apply Equation (5) to observe the resulting uncertainties in the
derived horizontal visibility. Table 7 displays the results.

23




Table 7. Visibility uncertainties for different haze layer upper boundary heights Zy, with the NPOESS
threshold resolution for optical depth and temperature profile

Visibility (km) ov (km)
Zy=1.5km
2 0.2
5 0.6
10 1.2
20 3.1

Several trends become apparent upon examination of these data. First, the Zy = 0.3 km results
have uncertainties that are large fractions of the given visibility (~50 to 80%). This is true simply
because the vertical position uncertainty (0.17 km) is comparable to the stated minimum Zy
value. Estimates for horizontal visibility in thin nighttime haze layers (when it is feasible to make
them) may thus be expected to have large fractional errors. These estimates will be severely
impacted by any failure to approach the stated vertical resolution. Another trend that is evident is
the relative constancy of the fractional error 6,/V for the 2-, 5-, and 10-km visibilities (at any
given Zy). The fractional error for the 20-km visibility is also noticeably larger than the value for
the lower visibilities. The invariance of the fractional visibility error at low visibilities is
attributable (for the specified values of o, = 0.03 and G, = 0.17 km) to the dominance of the
“constant” 6, term on the right-hand side of Equation (5). For example, for V =5 km, the o,
term is nearly 20 times larger than the term containing o.>. However, the latter term varies as the
square of the visibility, and the terms become comparable when V increases to 20 km. The
enhancement in the fractional error at high visibilities is attributable to the rapid decline in
optical depth (signal) in the denominator of Equation (3).

Overall, we may conclude that extraction of horizontal visibility from NPOESS data works best
in daytime conditions (i.e., for haze layers exceeding a 0.5-km thickness) and for low visibilities
(less than 20 km). We next ask how these results affect NOWS and TAWS detection range
results for specific sensor systems. In addition to the NOWS NVG and TAWS IR sensors treated
in the previous sections, we will include TAWS results for a TV sensor that primarily operates in
daytime conditions. The inclusion of a TV sensor is justified by the fact that it operates in the
very parameter space where visibility determination from NPOESS data is most practical.

In the results that follow, we define a quantity AR that is equal to one-half the difference between
the maximum and minimum detection ranges that are obtained from variations of visibility about
the nominal values from the first column of Table 7. Adding and subtracting each G, value in
Table 7 from the nominal visibility value gives the limits of visibility variation. We use the base
NOWS and TAWS environmental scenarios given in Table 3, varying only the meteorological
visibility and boundary layer height. The sensor height (100 ft) was low enough that the sensor
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position (relative to the top of the boundary layer) would not significantly affect the results. The
NOWS nighttime results for a common NVG shown in Table 8 indicate only slight impacts
because of visibility and boundary layer height. The detection range results appear to be limited
by sensor performance in this instance.

Table 8. NOWS detection ranges and uncertainties for AN/PVS-7 (third generation), for different haze
layer upper boundary heights Zy at 0100 local time

Visibility
(km)

Daytime detection range performance of a TV sensor for the sample scenario is illustrated in
Table 9. In this case, significant uncertainties are seen when the boundary layer height is 0.5 km
and lower (for all visibilities). For boundary layer heights 1 km and above, only the 5- and 10-
km visibility cases show significant uncertainties (the 20-km visibility is horizon limited from
this low altitude vantage point).

Table 10 lists the nighttime and Table 11 the daytime impacts on the TAWS IR sensor for our
sample scenario. The nighttime detection ranges appear to be unaffected by the atmosphere (i.e.,
are system limited) for visibilities 10 km and above. Uncertainties in the detection range appear
to be only moderately significant (10% to 20%) for boundary layer heights of 0.5 km and below.
The daytime IR results of Table 11 show similar trends, with the nominal detection ranges
essentially horizon limited for visibilities of 5 km and above. The detection range uncertainties
appear to be significant only for visibilities of 5 km and below and boundary layer heights of
0.5 km and below.

Table 9. TAWS detection ranges and uncertainties for TV sensor (U.S. Air Force Research Laboratory,
2001) for different haze layer upper boundary heights Zy at 1200 local time

Visibility
(km)
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Table 10. TAWS detection ranges and uncertainties for IR sensor (U.S. Air Force Research Laboratory,
2001) for different haze layer upper boundary heights Zy at 0000 local time
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Table 11. TAWS detection ranges and uncertainties for IR sensor (U.S. Air Force Research Laboratory,
2001) for different haze layer upper boundary heights Zy at 1200 local time
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5.3 Cloud Base Height and Cloud Cover

In previous sections, the effect of DMSP and NPOESS imager resolutions on the detection and
mapping of cloudy regions was discussed. We now develop a simple two-dimensional cloud
mask model to demonstrate how vertical resolution of cloud base height might interact with
horizontal resolution of fractional cloud cover. These will then be related to fractional cloud
cover effects in TAWS and NOWS detection range predictions.

We limit the discussion to a two-dimensional cloud mask with the realization that three-
dimensional cloud fields present a far more complicated general problem. Our task here is to
show that for the approximation of thin inhomogeneous cloud layers, a few general trends may
be deduced. Figure 25 shows the schematic geometry for the thin mask problem. The “cloud
mask” here, for the purposes of its use with a TDA, is a two-dimensional function that is derived
from satellite cloud imagery. It has a value of 1 when appropriate cloud-clearing algorithms
indicate cloudy pixels and 0 when “clear” pixels exist. We will simulate the result of the imaging
and cloud-clearing operations with a two-dimensional fractal distribution (Saupe, 1988) that is
thresholded to 50% of the maximum pixel value. The cloud mask is at a height 4 above an
observer situated on the surface. A rectilinear cloud mask surface element dx dy is situated at a
slant range r. and at a lateral displacement p from the observer.
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Cloud Mask g P ~J

Figure 25. Geometry for computation of surface

fractional cloud cover from 2-D cloud mask.

We define the cloud fraction F(x,y) at surface observer position (x,y) as the ratio of the solid
angle subtended by cloudy pixels (as seen from the observer’s position) to the total solid angle of

the hemisphere:

F(3) =5 [0@)ae
2r

(6)

in which Q( ) is the one-zero cloud mask function that has an implicit (x,y) dependence. If the
position of the dx dy area element is given by (x’, y’), then from the geometry of Figure 25 we

have

p=Jx-x)-(r-y),

= JETT,

cos 8 =h/r,

so that the element of solid angle d(2 may be expressed as

cos6 h '
dQ = -—r-cz—dX'dy = (hz " p2)3/2 f]rr]y .

Equation (6) may then be recast in Cartesian coordinates:

h

1 T 1 t
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= [ [ty (=, y - y)ax'dy
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where the definition
h

2 (h? +x* +y?)

fx,y)= 372 @®)

has been made. The right-hand side of Equation (7) is a two-dimensional convolution of the
cloud mask function Q(x,y) and the “scanning” function f{x,y). The convolution of the discretely
sampled Q(x,y) and f{x,y) functions is achieved by application of the two-dimensional Fourier
transform theorem and of a freeware variant of the fast Fourier transform (FFT) (Frigo &
Johnson, 1998). We begin a demonstration of this exercise by first showing a sample fractal
cloud distribution in Figure 26. The region covered by this distribution (50 km by 50 km) is
much larger than that used in the previous sections. The approximate horizontal spatial resolution
for this figure is 0.1 km. The cloud density is represented by a 256-level gray scale fractal
distribution that has been clipped at the 50% density level. Thus, only the highest densities of the
original fractal distribution are represented in the figure. We obtain the cloud mask for this
distribution by setting all nonzero values of the distribution density to unity. Figure 27 shows the
result of convolving this mask with the scanning function, according to the prescription of
Equations (7) and (8) for a mask or “cloud base” height 4 of 1000 feet (approximately 300 m).
The gray scale in Figure 27 has been reduced to eight levels, which correspond to cloud fraction
F ranging from 0/8 to 8/8, in increments of 1/8. The figure shows that the convolution closely
follows the cloud mask footprint for this low cloud base height. Figures 28 to 30 show the
1000-ft cloud base height convolution results for the NPOESS threshold resolution (0.4 km),
DMSP fine resolution (0.55 km), and DMSP smooth resolution 2.7 km), respectively.

Figure 26. Sampie fractal cloud distribution,
50-km by 50-km grid.
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Figure 27. 1000-ft

Figure 28. 1000-ft

Figure 29. 1000-ft

Figure 30. 1000-ft

cloud base fractional fractional fractional
fractional cloud cover, cloud cover, cloud cover,
cloud cover, 0.4-km 0.55-km 2.7-km
0.1-km resolution. resolution. resolution.
resolution.

Very little difference is seen between the NPOESS threshold and DMSP fine resolution spatial
distribution of fractional cloudiness, but the blockiness of the DMSP smooth resolution is
apparent. All the lower resolution distributions of overcast-level cloudiness appear to be larger
than those for the 0.1-km (original) resolution. This has substantial implications for application
of satellite-derived cloud cover data to TDA predictions, because the largest differences for
detection ranges occur between overcast and clear conditions. As the height of the cloud mask is
increased, the scanning function of Equation (8) broadens and the distributions of fractional
cloudiness for the different imaging resolutions become very similar. Figures 31 through 33
show the convolution results for a cloud base height 4 of 5000 ft (about 1500 m). Figures 34
through 36 represent results for cloud base height 4 of 10000 ft (about 3000 m). Note that the use
of Fourier methods to perform the convolution has introduced aliasing (or “bleed over”) effects
into the results. These are more apparent as the scanning function broadens.

The meaning that may be attached to each of the eight intensity levels in Figures 27 through 36
may be illustrated by executing a TDA model and assigning a detection range to each level. For
example, the TAWS package may be run for the base scenario of Table 3, with the cloud cover
varied from clear to overcast in 2/8 cover increments. The 1000-ft and 5000-ft cloud base heights
were run during the “low level cloud” category in TAWS with the stratus/stratocumulus cloud
type. The 10,000-ft base height cases were run as “mid-level cloud” nimbostratus cloud types.

For cloud fractions of 4/8 and below, the detection ranges shown in Table 12 are essentially
device limited for the local midnight cases and horizon limited for the local noon cases. Higher
cloud fractions cause slight reductions in the local midnight detection ranges and significant
reductions below the horizon limiting range for the local noon cases. The detection range results
apparently have only a weak dependence on cloud base height for the three levels that were
sampled. However, Figures 27 through 36 do suggest that the cloud base height has a major
effect on the distribution of observed cloud fraction over the surface.
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Figure 31.

5000-ft
cloud base
fractional
cloud
cover,
0.1-km
resolution.

Figure 34.

10,000-ft
fractional
cloud cover,
0.1-km
resolution.

Figure 32. 5000-ft
fractional
cloud
cover,
0.4-km
resolution.

Figure 33. 5000-ft

fractional
cloud
cover,
2.7-km
resolution.

Figure 35. 10,000-ft
fractional
cioud cover,
0.4-km
resolution.

Figure 36.

10,000-ft
fractional
cloud cover,
2.7-km
resolution.

Table 12. Sample comparison of TAWS detection range results for variations of cloud base height and
cloud fraction, using the Table 3 base scenario

Fraction

Cloud

0/8

2/8
4/8
6/8

8/8
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The cloud base height reported by a satellite platform thus has an indirect, although significant,
effect on TDA model predictions. When combined with imaged cloud cover data, the cloud base
height gives us an estimate of the apparent cloud cover that might be used as a TDA input for a
near-surface sensor. If the observer/sensor is below the cloud deck, the cloud base height does
not (at least for the cases examined) usually have a strong impact on TDA results. However, for
very low clouds (e.g., within 2000 feet of the surface), differences in DMSP smooth and
NPOESS threshold imaging resolution will be significant for surface targets near the edges of the
cloud mass. These differences nearly disappear for cloud base heights of 5000 feet and above.
The results of this exercise suggest that threshold value of 2 km for the NPOESS vertical
resolution of the cloud base height may be marginal because the transition of the cloud cover
footprint from “sharp” to “blurred” occurs at heights on the order of 1 km. This observation
should be regarded as tentative because, as noted before, we have based it on the thin mask
assumption. In any event, the fact that NPOESS car provide an estimate of cloud base height
(while DMSP does not) is a step forward from the Army’s TDA application standpoint.

6. Data Latency Issues

The environmental data provided by a satellite platform must traverse some number of
communications and data processing links before they become available as usable input to a
TDA package. The resulting “data latency period” is defined here as the time interval bound by
the satellite platform data acquisition time and the time when the data are available for TDA
model ingest. We include “on-board” processing time as part of this time interval. The potential
impact of data latency on TDA performance may be appreciated by enumerated examples of
environmental conditions that affect TDA predictions and show marked variability in time. For
visible and near-IR band sensors, such examples might include transitions between partly cloudy
and overcast skies, target movement between regions of differing clutter, transport and diffusion
of BIC events, and wind-induced variations of surface visibility. In addition, mid-IR and far-IR
sensors might have precipitation start/end times and intensity as serious time-critical
determinants of model predictions.

The current versions of the NOWS and TAWS packages are programmed to accept a predicted
set of environmental conditions specified by the user for times in the immediate future. For
TAWS, these predicted environmental conditions might include mesoscale forecast model
results, extrapolations from current conditions reported by surface or airborne observers, or
predictions based on remote sensing platform observations. Of course, all these data sources
have some degree of data latency and inaccuracy. The primary advantage of the remote sensing
approach is that it can provide many of the essential TDA model entries in near real time over
hostile territory. How closely to “real time” a remote sensor system (such as that on DMSP or
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NPOESS) does provide these data has a direct effect on the quality of the TDA predictions, as
will be seen presently.

As indicated in the impact analysis, one parameter that strongly affects IR sensor performance is
precipitation rate. In temperate climates, this quantity is normally very difficult to forecast
because of its dependence on many other meteorological conditions (such as air mass evolution
and time of air mass arrival over any given surface point), which are also difficult to predict. The
effect of precipitation rate data latency may be illustrated with a simple example of a 6-hour rain
event that begins at 0600 local time and ends at 1200. The event is a 5-mm/hr “square pulse”
superimposed upon the TAWS base scenario of Table 3. The sky is assumed to be clear before
and after the event and is assumed to be overcast with low cloud during the event. The hollow
dot curve of Figure 37 shows how the detection range results from TAWS vary over the course
of the day if the precipitation event is absent. This will be termed the “dry” scenario. The dry
scenario is used to illustrate the effect of time lags in data availability at the leading edge of the
rain event.

When the precipitation event is included in the scenario, the result shown as the heavy solid
curve of detection range versus time in Figure 37 is obtained. Note that the time increment is set
at the shortest value available in the TAWS model—15 minutes. The version of TAWS used
here allows only 12 time increments when data are reported before and after a given scenario
time. Therefore, to cover the 24-hour period of record, the model had to be run at four separate
times and the resulting 6-hour “panels” stitched together. This procedure was also followed for
the dry scenario of Figure 37. Because the history of the hypothetical rain event is embodied in
the heavy solid curve of Figure 37, the following discussion refers to this scenario as the “real”
or “actual” scenario. A comparison of the dry and real scenarios reveals that the predicted
detection ranges are noticeably different (and somewhat smaller) after the end of the rain event.
This is because of the normal operation of the TDA model, with its prediction of reduced thermal
contrast after periods of rain. A third or “wet” scenario was created to consider the effect of the
rainfall (and overcast) event, starting at 0600 and continuing to the end of the 24-hour period.
The solid dot curve of Figure 37 shows the detection range results for this scenario, which is
used to show data latency effects at the trailing edge of the rain event.

The simulation of data latency effects for the rain event follows a simple set of rules. Because of
the unpredictable timing of the precipitation, we assume that only the currently “available”
(time-delayed) data are used to extrapolate conditions into the future. We also assume that the
TDA model is constantly available to be run to accommodate latest available data. A computer
program was created to implement these assumptions and show the resulting disparities (or time-
delayed detection range minus real-time detection range “errors™) in model predictions for
arbitrary fixed size data latency periods. For each local time value when an error is computed, a
“retarded” time equal to the local time minus the latency period was computed. The position of
the retarded time relative to the rain event determines whether the beginning or end of the rain
event has been observed and which of the dry, wet, or real scenarios is to be used to generate a

32



prediction at the given time. The difference between this “latent™ detection range and the real
result is then stored for later display. Figure 38 shows TAWS detection range errors that result
from fairly short data latency periods.
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Local Time (hours)
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Figure 37. Detection range versus time for the “dry” (no precipitation), “actual” (short
precipitation event), and “wet” (extended precipitation event) scenarios.
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Figure 38. Short period data latency effects for 6-hour rain event beginning at
0600 local time.

Note that the positive amplitude errors in Figure 38 represent latent predictions that are
optimistic, i.e., the real-time detection ranges are smaller than the latent ones. Also observe that
the maximum range error grows as the latency period lengthens for the onset of the rain event,
while the minimum (negative) excursion appears to be independent of latency period (near the
end of the rain event). These trends in the error extrema are largely artifacts of where the rain
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event is placed in the course of the day. Figure 39 compares data latency effects for medium
(3-hour) and long (10-hour) data latency periods. The shorter latency curve has similar
characteristics to those in the previous plot, but the 10-hour latency curve is qualitatively
different. The long period results show an error with an opposite sign to the medium period at
the trailing edge of the rain event pulse. The minimum range error in the long latency curve has
about the same amplitude as the medium latency results but occurs 6 to 7 hours later.

Latency Time

|w—— i
—*— 10 Hr

Detection Range Error (km)

Local Time {hours)

Figure 39. Comparison of medium (3-hour) and long (10-hour) data latency period
effects on TAWS detection range estimates.
Figure 40 compares long latency times (6 and 8 hours) that equal and slightly exceed the
duration of the rain event. The transition between the short (latency less than or equal to the
event duration) and long latency times is particularly evident in this figure.
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Figure 40. Long period data latency effects on TAWS detection range estimates.
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The basic scenario examined here involves a moderate rain rate that persists over a substantial
portion of the day. For this situation, it is apparent that any data latency periods longer than

1 hour may lead to substantial detection range errors if ancillary data that refine or complement
remotely sensed data are absent. Shorter and more intense rain events will cause even larger
errors in TDA performance predictions and will impose stricter limits on acceptable data latency
levels. Scenarios in which the rainfall intensity or cloud cover varies markedly over the duration
of the event also represent challenges to future efforts at estimation of TDA error because of data
latency.

7. Reconnaissance and Combat Asset Effects

When it is desired to search for targets or engage them in combat in a specific region, one
quantity that has a bearing on the success at these tasks is the minimum range where the search
or targeting sensor can expect to detect targets. Conversely, the maximum range where a sensor
on a target platform can detect the platform carrying the attacker’s search/targeting sensor can
also affect the outcome of a search or attack mission. If the defender’s maximum detection range
exceeds the attacker’s minimum detection range by an appreciable extent, then it may be
expected in many individual encounters that the defender will have adequate time to deploy
active camouflage (such as screening obscurants), to deploy decoys, to perform evasive
maneuvers, or to incapacitate the attacking platform.

For data-denied areas where remote sensing of meteorological conditions by satellite is required,
measurement and spatial resolution uncertainties will be associated with measured values of
critical TDA input parameters. As seen before, these will translate into detection range estimates
and uncertainties for defender and attacker sensor systems.

7.1 Search Asset Effects

The allocation of low altitude search platforms such as unmanned aerial vehicles (UAVs) to
establish target positions over a region with defined boundaries is a process that strongly depends
on weather conditions. When cloud cover precludes satellite surveillance of a given area and
UAV platforms are required to search that area, any precipitation present will limit the detection
range available to the UAVs. The detection range degradation will affect the number N of UAV
platforms required to survey the region for a given time interval .o or will determine the time
interval required to search with a fixed number of platforms. The available precipitation rate over
the area may be derived from DMSP or NPOESS data and will be subject to uncertainties
analogous to those illustrated before. We may make a crude estimate of required platforms N for
a given available search interval fs.rc Or, alternatively, fsqrcn for a given N under a restrictive set
of simplifying assumptions. We assume that the platforms individually execute raster-scan
search patterns at a constant altitude, with average ground speed v and with a fractional search
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pattern overlap factor o (with 0 < <1 and o = 1 for complete overlap). When multiple
platforms are used, we assume that their search intervals coincide in time and do not overlap in
space. The precipitation rate (and thus, the detection range r for a given target class) is assumed
to be constant over the search period and area. A given platform will then sweep a survey area of
2rv per unit time over the search area 4. The number of platforms required to perform the
reconnaissance mission is then

N= 4 . )
2t (1=0)rv

If we apply the standard error propagation formula with the form given by Equation (4) and
consider only uncertainties in &, seqrcs, and r, we obtain

c, ENJ( 9, ] +(9L) (10)
tsearch r

for the estimated uncertainty oy in the number of required platforms N. The required search time
for a given N may then be expressed by rearrangement of Equation (9):

—A___. , (1)
2N(-a)rv

2 2
tsearch \[(%-\";I"J +(%) (12)

in the required search time. Unlike its meaning in Equation (10), the quantity o» might be
thought of as a measure of the uncertainty in the number of platforms available (e.g., attributable
to maintenance or competing mission allocations) rather than required to perform the mission.

=
search —

with the associated uncertainty

o,

Practical application of Equations (9) through (12) may require relaxation of any number of the
simplifying assumptions given previously, to account for such things as limits on available UAV
launching/tracking assets, uneven terrain, attrition because of enemy defenses and system
malfunctions, inhomogeneous cloud cover/precipitation, wind fields at platform flight altitudes,
and search pattern overlap. We should also note that the finite spatial resolution of the DMSP or
NPOESS sensors will result in corresponding uncertainties in the size 4 of the search area. The
purpose of this development is to demonstrate basic differences between results obtained at
differing DMSP and NPOESS data resolutions. Thus, the enrichment of the treatment to account
for additional environmental variables will be left for future efforts.

The precipitation impact results given in Section 5.1 may be used to construct a simple example
that illustrates the implications of this development. Consider a 100-km by 100-km square, flat
search area that receives a uniform rain rate over a 24-hour period that we may set to 5, 10, or
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20 mm/hr. A notional UAV system considered here might have an average ground speed v of
100 km/h. If the conditions used to construct the results in Section 5.1 are assumed, we may
combine the TAWS detection range estimates as functions of rain rate and time, the rain rate
measurement uncertainties for DMSP and NPOESS, and Equations (9) through (12) to estimate
uncertainties in required assets or search time about a nominal value over the day. The required
numbers N of search platforms derived for the three rain rates are shown in Figures 41 through
43, for a search pattern overlap factor of 0.25.

The uncertainty in the number of required platforms for the DMSP measurement accuracy level
is significantly larger than that for the NPOESS accuracy at all precipitation rates. The disparity
is particularly marked at the 10-mm/hr rain rate. The NPOESS data will thus give us a better idea
of the resources required to achieve the mission with a reasonable degree of certainty.

Equations (11) and (12) may also be applied to this scenario and may lead to a similar conclusion
with respect to required search time Zyq.cp. If, for example, the number of available platforms N is
6, then the approximate search time required to search the 100- by 100-km area at the 5-mm/hr
rain rate would be as depicted in Figure 44. Note that the criterion for determining a search time
given by Equation (11) assumes that the detection range r is invariant over the search period
Isearch- This is equivalent to determining a detection range at the beginning of the search period
and using it to set a fixed geometry search pattern for the observing platforms. In reality, the
search periods can be long enough (several hours) that the detection range may well vary
significantly during the search. These results are coarse, but they do at least provide a first order
estimate for anticipated surveillance times during adverse conditions.
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Figure 41. Estimated number N of search platforms required to search a 100-
by 100-km area in 4 hours, for a S-mm/hr steady rain.
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Figure 42. Required number of search platforms for a 10-mm/hr rain rate.
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Figure 43. Required number of search platforms for a 20-mm/hr rain rate.
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Figure 44. Estimated search time for a 100- by 100-km area with six observing
platforms at a 5S-mm/hr rain rate.

A more refined estimate of required search assets or time assumes continuous variation of the
detection range r with time. An alternate view of this assumption is that the observing platforms
are allowed to adapt their search patterns as detection conditions change. The time-invariant
expression of Equation (11) may therefore be modified to assume the differential form

dA

— =N (1-a) v (t) (13)

This may be integrated over the search area 4 and between search times ¢, and , + #seqren to yield
the expression

A to+ t:earch
a4’ =2n(-a)v [r@)dr . (14)
O tO

Performing the area integration and rearranging, we get the result

2N(1-a)y =
(A a)v jr(t)dt= 1 (15)

ta
which can be evaluated numerically and incrementally to provide an estimate of the search time
Isearch fOT 2 given search period starting time #,. A computer program was devised to perform this
operation through cubic splines to the TAWS-output detection range function r(#) and Romberg
integration. The results for the environmental conditions specified earlier in this section and
N = 6 observing platforms are given in Figures 45 through 47 for the three rain rates.
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Figure 45. Comparison of DMSP and NPOESS refined estimated search time
uncertainties for a S-mm/hr rain rate.

The search times displayed in Figures 45 through 47 may be regarded as “adaptive” because they
represent scenarios where the observing platforms respond to diurnal changes in detection range
and modify their search patterns accordingly. Also note, in a comparison of Figures 44 and 45,
that features in the search time curves are shifted to an earlier time of day in the adaptive search
pattern scenario of Figure 45 relative to those in the fixed pattern scenario of Figure 44.
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Figure 46. DMSP and NPOESS refined search time comparison for a 10-mm/hr rain rate.
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Figure 47. DMSP and NPOESS refined search time comparison for a 20-mm/hr rain rate.
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Figure 48. DMSP and NPOESS uncertainties in search platform requirements for
search of a 100- by 100-km area in 4 hours, 5-mm/hr rain rate.

The condition given by Equation (15) may be rearranged to yield the number N of platforms
required to perform a search over time Zeqyc, Starting at time z,:

A
N(,) = t,,

21-a)v [r(t)de

7

(16)

+1 search

o
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Unlike the implicit solution for #ar.x given as the limit of the integral in Equation (15), the
solution for N given in Equation (16) is explicit. If the scenario conditions for the 5-mm/hr rain
rate already stated are used, the number of required platforms over the course of the day (for a
4-hour search period) is displayed in Figure 48. These results may be compared with those
shown in Figure 41. Like the curves for search time versus time of day, general features in the
platform requirement curves shift to an earlier time of day for the adaptiye search mode.

7.2 Combat Attrition Effects

The basic Lanchester equations for modern warfare used in force-on-force attrition modeling
may be stated as (Taylor, 1981)

— =—qy, with 1. Ly + 1
dt ’ a v o —
(17)
i)i=——by, with 'l=tm,+ !
dt b v XPSSKYX

in which x and y are the force levels of the combatants at any given time t, fxy (farx) is the mean
acquisition time of target X (Y) for shooter Y (X), vy (V) is the firing rate for shooter Y (X),
Pssxy (Psskrx) 1s the probability for a single-shot kill on target X (Y) by shooter Y (X), and the
coefficient a (b) is a measure of the effectiveness of shooter Y(X) in reducing target X(Y).
Although many other forms for the force-on-force attrition relations are available in the
literature, we will focus on the basic Lanchester relations because the essential impact of
acquisition time is clearly illustrated.

If the Lanchester attrition rate coefficients a and b are assumed to be constant during the course
of the engagement, then Equation (17) leads to the Lanchester square law (Taylor, 1981):

b(x" —x5)=a(y* - y;), (18)

in which xg and y; are the initial force levels for X and Y. Taylor points out that these initial
values and the Lanchester coefficient ratio a/b have a number of important impacts on the
outcome of the X/Y engagement. For example, in a fight-to-the-finish scenario in which X wins
the engagement, it is necessary (from Equation (18)) to have the condition (xy/y,) > (a/b)"?. The
relative fire effectiveness ratio 11 = a/b plays a pivotal role not only in the linear system of
Equation (17), but in other, nonlinear, attrition formulations as well. However, we will focus on
the explicit dependence of the a and b coefficients on the #,xy and #,yx acquisition times given in
Equation (17):

(19
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-1
b=ty + ! .
V x Psskrx

The standard propagation of errors formulation used here may be applied under the assumption

that 6, and Gp are zero:
2 2
o, = ’n &’_ + 9._11.
1 a b )~

=n‘/a20,i\T +b0?

Tory

20)

b

in which the intermediate results 6, = a* Gy and G = b? Oy derived from Equation (19) have
been employed.

The acquisition times ,xy and #,yx may be determined by application of the NVESD search
model (Howe, 1993) and the appropriate TDA model. The mean acquisition time ¥rov (in

seconds) for a target within a sensor FOV for an ensemble of observers is given by

~ 4
—:-31-,— forP_<0.9
Trov= < (Nso)p (1)
6.8 forP_> 0.9
-

in which P_ is the fraction of the ensemble of observers that can eventually find the target, given
an unlimited amount of time, N is the number of resolvable cycles across the target-critical
dimension for the given environmental conditions and target range, and (Nsq)p is the number of
resolvable cycles across the target-critical dimension required for 50% of the observer population
to acquire the target for a particular target and clutter level combination. The asymptotic
probability P, is given as

P - [N/(Ng,),]
T O1+[N/(NG)] T

E=2.7+0.7[ N ]
(Nso)o

(22)

The resolvable cycle quantities N and (Nso)p used here are not direct output of the GUI version of
the TAWS 2.2 model used in the preparation of this report. The quantity N is explicitly available
within the body of the TAWS code, but (Nsp)p may be derived from user input for clutter level
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and target type. Because an alternate sensor performance model has been proposed for a TAWS
upgrade (Shirkey, Sauter, & Cormier, 2001), it may be premature to modify the TAWS code to
provide the NA(Nsp)p ratio that is required in the development. With the equivalenée between
Trov and either #,xy or 4y, it is then possible to derive a, b, 6, and G, for the combatant force
elements. In general, the sensors used by X and Y will be different and thus, #,xy will not equal
tavx. The modified version of TAWS (or NOWS) will therefore need to be exercised for both X
and Y’s sensor-target combinations.

8. Summary and Conclusions

A survey of parameters for sensors modeled in the NOWS and TAWS TDA packages revealed
that a small set of environmental variables significantly influenced detection range results for
the chosen scenarios. Table 13 summarizes these results.

Table 13. Summary of significant parameter main effect and interaction impacts

TDA Model / Sensor Type Signiﬁcant Main Effects . Signviﬁcant Interactions

L Illumination x Clutter
Clutter x Background type
Clutter x Boundary layer height
Clutter x BIC

NOWS/NVG = = Clutter level, background type

Clutter x Cloud cover (WFOV)

TAWS/IR (sparse/dense Precipitation intensity, cloud Season x Cloud cover

vegetation) . .. ' cover, BIC Precipitation x BIC (NFOV)
O Precipitation x Clutter

Background x Season
Background x Precipitation
Background x Cloud cover
Season x Cloud cover
Precipitation x BIC

TAWS/ IR (sparse/dense ‘ Precipitation intensity, cloud
,vegetatlon) i R cover, background type, BIC

The NPOESS threshold resolution provides superior spatial and parametric characterization in
comparison to that provided by the DMSP for several environmental parameters. The most
important of these from the Army standpoint are precipitation rate and cloud cover for IR and
NVG sensors and to a lesser degree, meteorological visibility for visible band TV sensors. An
example that demonstrates the superior NPOESS resolution may be seen in the portion of
detection range uncertainties in TAWS IR results attributable to DMSP/NPOESS rain rate
measurement errors in the sample scenario described. Table 14 summarizes the essential results
of this comparison.
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Table 14. Comparison of approximate TAWS IR detection range errors attributable to DMSP and
NPOESS measurement uncertainties

Nominal Precipitation Rate .§ = DMSP Detection Range . - NPOESS Detection Range -
: ' Error ’ Error
Smm/hr 1.5 km 0.5 km
10 mm/ hr 0.75 km 0.25 km
20mm/hr 0.25 km 0.1 km

The calibrated radiometric data from the VIIRS sensor and the finer frequency coverage and
spatial resolution of the microwave-band CMIS and CrIS sensors on NPOESS will make certain
parameters (such as surface visibility, boundary layer height, and cloud base height) available at
resolutions of practical use in Army TDA applications. Extraction of surface visibility from the
NPOESS data appears to be most practical for the combination of the daytime boundary layer
(with thicknesses exceeding 0.5 km) and low visibility (meteorological visibilities of less than
20 km). The higher horizontal resolution NPOESS imagery should also be superior to DMSP for
detecting range estimates at surface points near the edges of low cloud masses (with cloud base
heights on the order of 1 km AGL).

The rapidly varying rain scenario outlined here for the IR sensor illustrates that data latencies
that exceed on the order of 0.5 hour or more may seriously degrade the accuracy of TDA
detection range estimates. If operations during transient marginal weather conditions such as
broken heavy cloudiness or localized rain showers are anticipated, it would be wise to assume
that sensor performance predictions attributable solely to satellite observations would simply
provide a range of possibilities. More precise estimates could be secured (with some difficulty)
by data latency times being kept below 0.5 hour and the mission time over target being
synchronized with satellite overpass times for the target area. Another possibility is the use of
airborne weather radar to more precisely estimate rain rate or cloud cover over the target in near
real time. The use of data from a polar orbiting satellite platform is still useful in this latter case,
because the defining range of sensor performance predictions may be determined ahead of time
with some degree of confidence. Near real-time mission go/no-go or approach route decisions
could then be rendered more accurately and more rapidly.

A cursory assessment of target search times indicates that a more reliable estimate of required
search assets or times may be achieved through the use of NPOESS-resolution data. A rough
estimate is that the uncertainty in the NPOESS predictions will be 2 to 3 times smaller than
comparable DMSP-resolution predictions.

If the war gaming community wishes to include the effect of supporting satellite weather
observations in combat attrition scenarios, it will be important to modify the current TDA
inventory to provide the explicit input required to control the combat exchange equations. The
estimation of the impact of spatial or parameter resolution on the attrition of combat assets will
likely have to await the coupling of a particular TDA to a particular war game simulation.
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Obviously, the results given here for spatial resolution and parameter impacts are not compre-
hensive. However, they are entirely adequate to demonstrate substantial improvements in data
quality (in comparison to that presently available from DMSP) when the threshold NPOESS
resolutions are considered.

This study has also pointed out some limitations of the TDA implementations that reduce their
utility to Army users. In particular, the treatment of BIC effects could be made more sophisti-
cated by at least enabling the user to specify proportions of obscurant aerosol types and to
specify absolute concentrations. The current version of TAWS allows only a single “average”
mixture of BIC components at a single absolute concentration. One may explicitly consider the
effects of three inventory smokes (white phosphorous, fog oil, and hexachloro-ethane) in the
current version of TAWS but only by substituting these (one at a time) for the background haze
aerosol. Future studies that couple TAWS with satellite data or battlefield obscurant transport
and diffusion models will be more practical if BIC components may be easily and independently
added to environmental scenarios in TAWS,

Capability to output resolvable cycle results for given sensor-target combinations should be
added to TAWS. This will make application of TAWS results to combat attrition models a
feasible proposition.

Later releases of TAWS may address the problem of displaying model results for a full 24-hour
period at the highest time resolution. Currently, the user must run the code several times in order
to cover the entire day at the 15-minute time resolution.

Detection range impacts attributable to precipitation intensity could not be directly examined for
the NOWS NVG cases. A more explicit treatment of rain/snow rate impacts in NOWS (or its
embedded successor in TAWS) might thus prove useful for Army users. This would also permit
extension of the IR sensor studies of data latency effects because of rain or snow to TV and NVG
sensor types.

A few properties of the background surface adjacent to the target should be investigated further.
These include the effects of near-surface soil moisture and large scale clutter in the vicinity of
large targets. Soil moisture effects on detection range were somewhat smaller than anticipated in
the results discussed previously. Different target types, sensor selections, or soil types may
produce more significant soil moisture effects than those observed here. The nominal spatial
resolution of polar orbiting platforms makes a direct assessment of background clutter practical
for fairly large targets. Indirect assessment of smaller scale surface clutter may be possible when
large scale regions of characteristic clutter features (such as clumps of vegetation in desert areas)
are identified and their state (e.g., wet, growing, snow covered, etc.) is characterized.

A more detailed (3-D) treatment of the interaction of satellite imaging resolution, cloud cover,
cloud base height, and TDA detection range estimates in the vicinity of cloud boundaries could
be used to refine the results of the simplified 2-D evaluation given. The 3-D treatment will be
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especially significant for cases when the apparent angle between the sun and the satellite
platform or the angle between the satellite and the local zenith (as seen from the target location)
is large. In that event, the distribution of cloud shadows over the target scene or the apparent
level of cloudiness may be much different from those deduced from a simple 2-D cloud mask
scheme.
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10. Acronyms

AGL
ARL
AVHRR
BIC
CECOM
CFLOS
CMIS
CrlS
DMSP
DOS
EDR
EOS AM-1
EOTDA
FFT
FWHM
GUI
IORD
IR
Landsat
LOS
MODIS
MuSES
NOAA
NFOV
NOWS
NPOESS
NVESD
NVG
OLS

(0N
PMT
SPOT
SSM/1
SSM/T-1

above ground level

Army Research Laboratory

advanced very high resolution radiometer
battlefield-induced contaminants
Communication and Electronics Command
cloud-free line of sight

conical microwave imager/sounder

cross-track infrared sounder

Defense Meteorological Satellite Program

disk operating system

environmental data record

earth-orbiting system AM-1 passage
electro-optical tactical decision aid

fast Fourier transform

full width at half maximum

graphical user interface

integrated operational requirements document
infrared

land satellite system

line of sight

moderate resolution imaging spectro-radiometer
multi-service electro-optic signature

National Oceanic and Atmospheric Administration
narrow field of view

NVG operations weather software

national polar-orbiting operational environmental satellite system
Night Vision and Electronic Sensors Directorate
night vision goggles

operational line scan system

operating system

photo multiplier

Satellite Pour 1’Observation de la Terre

special sensor microwave imager

special sensor atmospheric temperature sounder
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SSM/T-2
TAWS
TDA

VvV
UAV
VIIRS
WFOV

special sensor microwave water vapor profiler
target acquisition weather software

tactical decision aid

television

unmanned aerial vehicle

visible/infrared imager/radiometer suite

wide field of view
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